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ABSi PACT

' 2 The study analyzes the internal states of a 3-component system with one active

element and two spares in cold standby (pure replacement policy without repair).

Elements of the system are assumed to have exponentially distributed lifetimes,

however, special attention is paid to systems composed of components with different

failure rates. The analysis is developed as a continuous-time Markovian process with
stationary transition probabilities. Probabilities that exactly i components have failed

by time t are calculated based on three levels of information: for systems in unknown

condition, for systems known to be in UP-condition, and for systems whose condition

was not observed for some amount of time. A key part is the investigation of

conditional probabilities of i components having failed by time t for a system known to

b! UP, the conditional limiting distribution as t-+00, and relation to the system failure

rate. State probabilities for systems not monitored continuously for being UP are
shown to be bounded between those corresponding to systems that are either observed

constantly or not at all.
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I. INTRODUCTION

This paper considers a non-repairable system of three components paying

attention to various system structures that result from the use of non-identical

components. The objective of the analysis is to derive and investigate state

probabilities' for the system assuming different levels of information available about

the system, and, as far as applicable, with respect to different arrangements of the
components within the system. Although limited to a 3-component system, the basic

results may be extended to non-homogeneous systems with more than three elements.

A stochastic model was found to be a convenient approach to the problem. It is

developed in Chapter II together with the entire set of transition probabilities. That

chapter will also show the system survival function, distribution function, and density

function as functions that do not depend on the order of the components within the

system. Chapter III will derive the state probabilities in three steps. A subset of the

transition probabilities will immediatedly determine the state probabilities of a s, stem

in unknown condition. Special emphasis is given to a system which is known to be in
working condition. In this case the resulting conditional state probabilities will be

discussed in their limiting distribution and in their relation to the system failure rate;

the position of the most reliable component in the system will turn out to be significant

for the limiting conditional state probabilities. The final step will derive state

probabilities for a system which is not monitored continuously.

Most computational work is not shown within the paper, however, the reader is

provided with extensive tables which list the basic results for all possible system

structures.

A. THE MODEL OF THE 3-COMPONENT STANDBY SYSTEM

The system under consideration throughout this paper consists of three

components that may be thought of as an original and two spare components. Only

one of the components is active at a given point in time and is exposed to failure.

When a component fails it is replaced by one of the spares, if available. The

'The system will he said to be in state i if exactly i of the components are
DOWN; thu' the state probabilities corres pond to the pr'obabilitv that (6,, 2, or all
components have failed at some time t (seeChapter II).
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switch-over is assumed to cause no initial shock to the new component and to occur

immediatedly after failure and in a negligible amount of time.

The system works (and is said to be UP) as long as at least one of its
components is operable; it fails (is DOWN) if all components have failed.

No repair facility is provided for a broken component; thus it remains in the

DOWN-condition throughout the mission once it has failed. This implies that the

system itself will fail with certainty in a finite amount of time.

It will always be assumed that the system starts its useful life at t=0 with all

components in the UP-condition.

B. IMPORTANT ASSUMPTIONS OF THE MODEL
The main characteristics of the system arise from three basic assumptions:

(a) Components in the spare status cannot fail. Therefore the failure rate of a

spare is 0 (cold standby) and the lifetime of a component starts at the moment

it is switched into the active state.

(b) The active component has an exponential life distribution, i.e., there is no

effect of age on the component failure rate.

(c) All life lengths are mutually independent; i.e., the performance of the

component currently active does not depend on the performance of its

predecessor(s).

These assumptions are essential for the Markovian model used later on; they establish

constant transition rates throughout the states of the system with changes possible

only at the time a failure (=transition to the next state) occurs.

Note, however, that the life lengths of components in the active state are not
assumed to be distributed identically. Thus the system may consist of components with

dilferent expected lifetimes.

Whenever it is required to distinguish between systems with respect to the

"homogeneity of their components, then:

(a) Structure I (k Xk k.,) will refer to a system with three components each

having a dilferent failure rate (the most general case);
j,_ (b) Structure 2 (ki, ki = Xk= k) will denote a system with two components of the

same kind (having failure rate k) whereas the component used in the it h place,place
has a different failure rate ki;

C2,1



(c) Structure 3 (Xo=Xl=k k) will denote a system of three identicalI2
components with common failure rate k.

i
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II. MODELING THE 3-COMPONENT STANDBY SYSTEM

The system may be found at any point of time t to be in one out of four possible

states {0,1,2,3}. It will be said to be in state i if exactly i of the components are

DOWN; thus the system will be UP in states {0,1,2} and DOWN in state 3. Since no

repair is provided, it is immediate that the system after starting its life at t = 0 in state 0

will transit into state I an and finally be absorbed in the DOWN-state 3.

The amount of time, Ti, the system spends in state i before making the transition

into state j is a random variable, distributed exponentially with mean L' i, where ki is1 1

the failure rate of the component active in state i. By assumption Ti is independent of

previous component failures in the system.

The system, or better yet the underlying process, may thus be modeled as a

continuous-time Markovian process with stationary (homogeneous) transition

probabilities [Refs. 1,2:pp. 26, 234].

Moreover, the process constitutes a pure birth process with a finite state space.

Transitions are possible within the four states only from state i to state i+ 1 and occur

at rate Xi" State 3 is absorbing and allows no further transitions once it has been

reached.

A. TRANSITION PROBABILITIES

By the memoryless property of the exponential sojourn times in a

tirne-homogeneous Markovian process, the transition probabilities are conditioned only

on the state of the system at time t=0 but not on the amount of time the system has

already spent in that state.

Let Z(t) = 0,1,2,3 indicate the state of the system at time t, and

1- P(t) = P[Z(t)= jIZ(O)=i]

be the probability that a process in state i at time t=0 will be in state j some time t

later.

Then the transition probabilities Pi (t) may be obtained by solving the

differential set of the Kolmogorov forwards equations for the pure birth process, as

done by Ross IRef. 2:p. 2441.

,l10
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In genera! formulation

Pii(t) = e- it

P.ip) = k ei PSe ,j_(s) ds

for i= 0,1,2 and i+ <j 3.

The computational work is too bulky to be presented within this paper, however,

the resulting transition probabilities are completely listed in Tables Ill . . . VII (see

Appendix A).

B. SYSTEM SURVIVAL-, DISTRIBUTION-, AND DENSITY FUNCTIONS

We will assume in what follows that at time t = 0 the system is new, that is that

Z(O)= 0.

Let T be the failure time of the system. Then the probability that the system will

survive a mission of length t is just the probability that the system will not transit into

the I)OWN-state before the end of the mission

F(t) = PIT> ti = I - PO3(t)

Furthermore

F(t) = PIT< tj = P 03(t)

and

f(t) = d'dt [F(t)l d/dt 1P03(t)I

The system survival function P(t), distribution function F(t), and the density
function f(t) are summarized in Table Vill for the three possible structures of the

system (see Appendix B). In either case, the formulas obtained for the functions are

- completely symmetric in the indices of the X.. Thus they do not depend on the order inI

which the various components are used in the system.

,
,
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11. STATE PROBABILITIES IN THE 3-COMPONENT SYSTEM

In the following, state probabilities for the 3-component system are derived for

three levels of information about the system:

(a) State probabilities Pj(t) for a system which are unconditioned on any

information about its condition after the initial start-up at t = 0

(b) Conditional state probabilities Q.(t) for a system which is known to be in

UP-condition at time t.

(c) Conditional state probabilities Pj (t) for a system which was observed to be in

UP-condition at some time s < t.
If the system was observed to be in a specific state i at some time after start-up

then this information would reinitialize the Markovian process and either lead back to

one of above cases or to a different model with less components. Therefore this case

will not be discussed in the following analysis.

Most of the expressions developed for the state probabilities in this chapter

contain several exponential terms (or a combination of two or more exponential and

constant terms). Unless we restrict to simple cases, the attempt to calculate extreme

points or intersection points for the functions will lead to equations which can only be
solved using numerical procedures. Therefore, an approach is used which illustrates

the functions in probability plots for various parameter values and stresses special

features and limiting behaviour as t-- O.

A. STATE PROBABILITIES OF A SYSTEM IN UNKNOWN CONDITION
Within this section it is assumed that no information about the state or the

condition of the system is available.

The probability that a system will be found in state j at time t, given it started its

useful life at t = 0 in state 0, is just the probability of a transitioin into state j during

(O,t). To simplify notation, we may define

l)i(t) P[Z(t)=jIZ(0)=OI = P0 (t)

These state probabilities P.(t) have been plotted in Figures 3.1 to 3.3 for three

failure rate combinations and over a standardized time axis (in multiples of the system

" MTT[ = 1 2++l').

12
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Figure 3.3 Unconditional State Probabilities Pi(t), %o:X 1:X2 = 1:2:4.

General information about the state probabilities Pj(t) may be obtained by

considering their first derivatives

d,'dt [Pj(t)] = -XjPj(t) + Xj-jPj-J(t)

The state probabilities Pj(t) will increase if the probability of a transition into

state j exceeds the probability of a transition out of state j at time t. Therefore it is

immediate that P0(t) and P3(t) are monotonously decreasing, respectively increasing

functions in t.

P,(t) and P2(t) appear to constitute unimodal functions2 whose maxima can be

located at

(a) For P,(t):
1

t - (lnk - Inko) if koe 1

and

2A proof for this statement was not found in the literature, however, all trials to
construct a counter example have failed within the work done for this study.
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1t- if X0o=X1= X

(b) For P2(t):

A closed form expression exists only for a homogeneous system:

2
t = if 'o = 1 =

The limiting state probabilities

-= lim P..(t)= I0 if j=0,1,2
t +o0 1 if j=3

confirm the expectation that the system will finally be absorbed in the DOWN-state 3.

B. STATE PROBABILITIES FOR A SYSTEM IN KNOWN CONDITION

The following sections will consider systems which, without revealing their exact

states, provide information enough to decide on their overall condition - system UP or

DOWN - at time t.

If the system is known to be UP at time t then it may be in either one of the

states {0,1,2} with probability

Q.(t) = P[Z(t)-j I system UlP, Z(O)=O] (eqn 3.1)
"- Po0 (t)

.= P )j = 0, 1,2
1 - P03(t)

which can be readily obtained from the transition probabilities in Tables III . .. VII.

Recalling that P0 (t) = Pj(t), the conditional state probabilities may be rewritten

, Qj(t) = P.(t) j = 0,1,2i 1- P3(t)

and, for a fixed t, can thus be obtained by multiplying the state probabilities P (t), we

would get without the additional information, each by the same factor c = [ - 13 (t)F- .

This factor c is greater than or equal to 1 for all t and, as a monotonously increasing

function oft, may get as large as infinity as t-+0.

The probability plots for the conditional state probabilities Qj(t), in Figures 3.4

to 3.6, are based on the same ratios in the failure rates as the plots of Figures 3.1 to

3.3 and may provide a rough idea about the shape of the functions Q (t).

15
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Figure 3.6 Conditional State Probabilities Qj(t), ko:kl:kz 1:2:4.

1. Limiting State Probabilities

The plot of Figure 3.6 suggests the existence of limiting conditional state

probabilities that are not necessarily equal to 0 or 1, unlike the case of the

unconditional state probabilities Pj(t). State 2 does not seem to take over the part of

an absorbing state in all cases, as we might have expected.

To derive the lirmiting conditional state probabilities

Q j lim Q .(t) = lim P[Z(t) =j I system U P, Z(0) = 01
,-+ t -+ 0

for J=0,1,2 it is necessary to pay close attention to the order in which components

with different failure rates are used in the system. We also need to specify which

component has the minimum failure rate. It is therefore convenient to derive the

-rlIitin probabilities separately for the different orderings of component failure rates

possible within the system.

a. Structure I (X0OX 1~k2 )

In this structure the failure rates of the components are all different; we

can, therefore, specify a unique minimum failure rate k.. It should be recalled that the

17
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indices of the X. denote the position of the corresponding component within the

system (initial component or I spare); thus e.g., kX= min(X0,X1 X2 ) will express that

the first spare is assumed to be the component with the smallest failure rate used in the

system.

Using Equation 3.1 and Table III we get the limiting probability matrix

shown in Table 1.

TABLE I

LIMITING STATE PROBABILITIES Qj ko lz k2

Q0o Q, Q2

X o = min(kokr1 ,X2 ) (k0k1 )(kokz) 0a(kd2 -) k o

X1X2 k1k k2

k1 = min(X0ok 1 k) 0 xkl k1
k k2 2

kz = min(kWX1 X) 0 0 1

b. Structure 2 (ki, k = k = k)

The limiting state probabilities Qj may be achieved either by calculating

the limits of the Qj(t), as t-+00, or they may be derived from the general structure

(Table I) using the following rules:

(a) If k i <k, i.e., if there is a unique component associated with the minimum

failure rate. then use that row of the matrix which corresponds to the position

of the singular component within the system

(b) If k < k i , i.e., if the minimum failure rates applies to two components, then

use that row of the matrix which corresponds to the position of that

component with failure rate k which is used last within the system (i.e., if two

rows in the matrix apply then use the lower one).

The limiting state probabilities are listed in Table 11.

18
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TABLE II

LIMITING STATE PROBABILITIESQj, XjXj=Xk=

System Structure Q0 Q1 Q2

(Xok)2 ko(k-k o)  ko

CaseX -X-X: ° < X2 <_ -_ X0
0 000

%0 > k0
Case k-k,-X: kX  < X 0 I - ki

kx>k 0 0

Case k-k -k: K <K 0 1

K K
K>K 0 0 1

2X 22

c. Structure 3 (k o = k = k z = K)

In this structure the system consists of three identical components. The

limiting state probabilities may be calculated to be
Q0= 0
Q, =0

Q , =

or they may be looked up in Table I by taking the last row of the matrix (in

accordance to the rule that points to the last used component, if more than one has the

same minimum failure rate).

2. Interpretation of the Limiting Conditional State Probabilities

One might have expected to find systems working on their very last spare, if

they are still alive after use for a sufficiently large amount of' time. However, the

results show, that under certain arrangements of' the component failure rates, we may

vcr well find systems working even on their initial component.

-
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An explanation for this system behaviour is most readily obtained by looking

at the upper triangular probability matrix in Table I for a system composed of

components all with different failure rates. Obviously, the component with the

minimum failure rate takes on an important position within the system. Given that the

system is UP, the limiting conditional state distribution will put all its probability mass

onto states corresponding to the most reliable component (main diagonal in the

matrix) and its possible replacements. Thus functioning systems drop through initial

less reliable components at least onto their most reliable ones. One will always find
systems which remain working on their most reliable component. Others will continue

to transit into further states (unless the most reliable component is also the last one

available). If the initial component is also the most reliable one then either one of the

spares may be found to carry the system in the limiting distribution; there is no second

'drop through' to a spare with a smaller failure rate. The probabilities that a system
will eventually be found in states corresponding to the most reliable component and its

possible replacements depend only on the failure rates associated with these

components.

In case of the more restrictive structures 2 and 3 we are not always able to

define a unique component to be the most reliable one. Previous observations,

however, remain valid if we assign the attribute 'most reliable' to that component

among identical ones, which is used last within the system. Therefore, if more than one

component shares the same minimum failure rate, we will observe systems dropping

through identical components and, in the limiting probability, a system with three

identical components will be found working on its last spare with certainty.
3. System Failure Rate as a Linear Function of the Conditional State Probabilities

The system failure rate r(t) may be considered to be the probability of an

instantaneous system failure at any time t, given the system survived up to time t.

Then

P[system fails in (t,t + h) I system 1.P at t]fi)=lim
h-O h

2 PIZ(t+ h)= 3, Z(t)= il PIZ(t)= i system UP]

,h -0 11

..' " P (h) Q (t)
,.. = ira i3 i

h-•O t1) h

2 Qi(t) r 1 (h)
Qj h--t) h
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Since the transition probabilities

P. .(h)P.] - lim --1t'i h

' h-+O h

are constant for a Markovian process with stationary transition probabilities, the

system failure rate can be expressed as a linear combination of the conditional state

probabilities Qj(t).

For the 3-component system under consideration, we have p03 = P13 = 0 and

P23 = * • The system failure rate thus reduces to

r(t) = k 2Q2(t)

and calculates to:

(a) Structure I

r(t) = Oki (X -X )e' ot-(Xo-k)e-lt + (.o-kl)e 2 tI
k =1 2( Xk.X 2)e_ot ko X 2(o.k2)e_ 'kt + 0 Okl(k0 X ie-zt

(b) Structure 2

r(t) = ..2  [(k -)t-lle't e-it ++ ~ e
- ' .(Xi.2X)+ X.(X,.4)tje-kt + Xv2e-'-t

(c) Structure 3
k, 3t2

r( t ) =' '__ _ _I + X.t + KX: 2t2

These system failure rates are continuous functions and, as shown in general

by Barlow and Proschan [Ref. 3:p. 1001, strictly increasing over t. Thus the

3-component system wears out as it ages.

File system failure rate r(t) does not depend on the order in which the

components are arranged within the system (however, Qj(t) does). In the limit, as

t-+ r(t) always approaches the minimum failure rate found in the system.

C. STATE PROBABILITIES FOUND IN A SYSTEM NOT OBSERVED

CONTINUOUSLY

In the previous sections state probabilities were derived for two special cases:

(a) State probabilities P (t) for a system that did not reveal any inlormation

about its condition at time t.

21
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(b) Conditional state probabilitics Qj(t) for a system that was known to be in

UP-condition at time t.

We now want to combine both cases and calculate state probabilities P. (t) for a

system that was observed in ULP-condition at some time s in the past but whose present

condition (at time t) is unknown. Since the system may have failed during (s,t) the

DOWN-state 3 must be included in the analysis.

As before, we implicitly assume that the system was new when started up at t = 0,

i.e., that Z(O)= 0. By conditioning

P. (t) M P[Z(t)=jl system UP at sl

= - P[Z(t)= j Z(s) i PIZ(s)= iI sytem UP at s]

= ' pij(t-s) Qi ( s )

and for j=0,1,2 by Equation 3.1

P. (t) = -ia I P0 (s) j= 0,1,2

-l 03(s)

Note: This equation is also valid for P3 (t), if the sum is taken for i<j only (since

PIZ(s) = 31 system tiP at sj = 0).
After calculating the sum, above equation reduces to

P. (t) - P (t) j=0,1,2
a I -1 I (03( )

or, in terms of state probabilities P( t),

P. (t) - P.(t) j=0,1,2
a 1 - 1'3(s)

Again, the set of conditional state probabilities for the UlP-states of the system

may be obtained by multiplying each of the state probabilities P (t) by some factor

c = P -P3s) 1 . 11 owever, c is a function of s only and, once s is fixed, it remains

contant over t > s.

'[he time s. at which the system was observed to be 'P, can be located anywhere

in the interval m,t). If s = 0 then c =1, and P. (t) reduces to P,(t), as expected (the

implicit assumption Z0) = 0 does already include the 'system UP' information). If s = t

then c = c, and we obtain the conditional state probabilities Qj (t) investigated in the

last section.
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Since P3(t) is monotonously increasing over t, c is always found to be I -< c -< c.

Therefore the conditional state probabilities P. (t) are bounded by P.(t) and Qj(t) such

that Pj(t) < Pj"(t)-< Qj(t), j = 0,1,2.

Switching between P (t), Pj (t), and Q (t) enables us to calculate the state

probabilities for different techniques used in observing the condition of the system. If

the condition of a system is monitored continuously and found to be UP over a period

of time then the state probabilities calculated at any time within the interval will follow

the Q.(t) curves. As soon as observations are interrupted the state probabilities are

determined by P. (t). If no further observation is taken from the system, then the

increasing uncertainty about the condition of the system will force the state

probabilities associated with the UP-states asymptotically towards their lower

boundaries P (t). At the same time, the DOWN-state probability

P3 (t) - I " 3(t)- P3(s)l

increases from 0 towards its upper bound P3(t).

This is illustrated in Figure 3.7 for state I of the system. It is assumed that the

system was initially monitored continuously (in UP-condition). At time s= lxMTTF

observation was discontinued until, in a single observation at s2 = 2xMTTF, the system

was found to be still in UP-condition. The probability plot for state I (bold line) is

therefore composed of three partial plots using Ql(t), for 0-< t_< s,, and P, (t) with

s=s, (for s, 5t - s2 ) and s = s (for t > s 2).
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Figure 3.7 Composed State Probabilities for State 1, ko k, k2 k.=
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APPENDIX A

TRANSITION PROBABILITIES FOR THE 4-STATE MODEL

TRA-'NSITfION PROBABILFIIS S'FRt~~IA-RI: I (k&? 0 cI ey

P00(t) 12 0

01t

PfJ(t) xox1 t- -x

0k 0- +(1- 2

0 1 x 1x 2Ck0 -x0- x 2 x 1 zt

031 (') = 1

k tt

Ce 2 -C 1

C2

= 2

I- 2t I



TABLE IV

TRANSITION PROBABILITIES STRUCTURE 2A (X0, kX1 = X)

P00(t) e -kXt

PO I(M)x= (c- - o) t)

)2x QJ(X-X)t -11et +e-kot}

P02(t) 2 0 -lle

P03(t) =I -I+Xct

P22(t)=

P2 3(t) 1 Iet

p 33(t) = 1

26
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TABLE V
TRANSITION PROBABILITIES STRUCTURE 2B (ko=k 2 k, XI)

*P 00(t) = &-k

Po I(t) = k (&-k -& 1-i)

P02(t) = k k~ ~ ~~t

P 03(t) = 1- ~X-?)+X X.Xtet+X&~

P11(t) = e-kit

_ ___ Xt -xt)* P~~12(t) = & & 1

P 13(t) = I - xt -xC4

P 22(t) = e-t

P2 3(t) = I-ex

P33(t)=

*Il
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TABLE VI

TRANSITION PROBABI LITIES STRUCTURE 2C (X=)2 X, )12)

P00(t) = e-kt

Pol(t) = )t-,

P0 2(t) = _____7k

{[ 2( 2- )t-U 2(ke't'Ce 2t +}'e )

P03(t =k k )22 2

P11(t)= -k

p 1 2(t) = k__ k Xt X -k2t
2

kX e-k - kC-kY

P,(t) = j... 2

p 2 3(t) = e 2t

I) 3 (t) = I-

28



TABLE VI I

TRANSITION PROBABILITIES STRUCTURE 3 = =

Poo(t) = e-kt

I P01(t) = kte-kt

P02(t) = i/?2t2e-t

P03(t) = 1 -(1 +Xt+ X2t2)e- k t

P1 1(t) =e- t

P1 2(t) = te-kt

3(= -(1 +Xt)e k t

P22(t) = e-kt

P23(t)

I 33(t =
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* APPENDIX B

V SYSTEM CHARACTERISTICS

TABLE Vill
- . SYSTEM SURVIVAL-, DISTFRI BUION-, DENSITY FUJNCTIONS

Structure 1 X0;x1;X)

F(t) = 0 kI l21-2 e _Xot -.0k2.. t&'zcoXt -x 2 ti(k 041 )(x0 -k2)(x1 -X2) ) O x K

F(t) = I - x 0 k1 x 2  x x1K e-kot - kX0X2 ekit + x0-x1 e- 2t

f (t) = (XO) 0 1 2 [(x dek 0t - (k ),)c' 1 t + (k0 1)-2 ti

Structure (,i Xl = k,

3-. ~ ~ (t) 2 1 IX1 Xi-x)t I Xe(x.Xtt + -kit

Structure 3 (Xc, = xI=x

FUt) = (I + Xt+ ,2 2t2)C-kt

1:(t) = 1 - (I +kt + t2Ck

F (t) = kX~t e -t

30)
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